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The method of multiple scales is used to determine a first-order uniform expansion for 
the effect of counter-rotating steady streamwise vortices in growing boundary layers 
on oblique Tollmien-Schlichting waves. The results show that such vortices have a 
strong tendency to amplify oblique Tollmien-Schlichting waves having a spanwise 
wavelength that is twice the wavelength of the vortices. An analytical expression is 
derived for the growth rates of these waves. These exponential growth rates increase 
linearly with increasing amplitudes of the vortices. Numerical results are presented. 
They suggest that this mechanism may dominate the instability. 

1. Introduction 
We consider the effect of counter-rotating steady streamwise vortices on the insta- 

bility of growing boundary layers. We describe a parametric instability mechanism 
by which such vortices amplify selected oblique Tollmien-Schlichting waves. To first 
order, the selected waves have a spanwise wavelength that is twice that of the vortices. 

Weak and moderately strong steady streamwise vortices arise abundantly in 
boundary layers from many causes. In  a series of wind-tunnel tests over flat plates with 
zero-pressure gradient, Klebanoff & Tidstrom ( 1959) observed steady quasi-periodic 
variations in the spanwise direction (streamwise vortices) evidently evoked by free- 
stream conditions. Similar vortices were observed in a National Physical Laboratory 
tunnel specifically designed for the study of two-dimensional boundary layers. 
Bradshaw (1965) found that these variations may appear downstream of slightly non- 
uniform settling-chamber damping screens, depending on their solidity. Using the 
method of matched asymptotic expansions, Crow (1966) inferred the effect of a small, 
periodic incident transverse flow on the mean boundary layer over a flat plate. 

Gortler (1941) found that a boundary layer over a concave surface is strongly 
unstable. The instability is manifested by the presence of counter-rotating vortices 
(called Gortler vortices) having their axis in the streamwise direction. Using the china- 
clay technique, Gregory & Walker (1956) were the first to observe traces of Gortler 
vortices. Then, Aihara (1962) and Tani & Sakagami (1962) used coloured liquids and 
smoke threads to visualize these vortices. Subsequently, Wortmann (1964) used the 
tellurium method to visualize these vortices in a water tunnel. Then, Bippes (1 978) and 
Bippes & Gortler (1972) conducted experiments on walls with the radii of curvature 
0.5 and 1 m so that the generated Gortler vortices were fairly strong. They made the 
flow visible by using the hydrogen-bubble technique and photographed it with a 
photogrammatic stereocamera. The photographs were analysed photogrammetrically 
and fairly accurate quantitative information of the flow field was obtained. Using 
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hot-wire measurements, Aihara (1962) and Tani (1961, 1962) found three-dimensional 
counter-rotating vortices with spanwise vorticity in a boundary layer over a concave 
wall. Unlike the case of pre-existing streamwise vortices, Gortler vortices generated 
by a concave surface are amplified with streamwise distance. Their amplification is 
exponential (Smith 1955) when they are weak and it appears to be linear when they are 
strong (Bippes 1978). 

These vortices by themselves may not lead to the transition of laminar flows to 
turbulent flows. The influence of steady streamwise vortices on two-dimensional 
Tollmien-Schlichting waves was studied experimentally by Tani ( 1  961), Aihara (1962, 
1976), Tani & Sakagami (1962), Tani & Aihara (1969), Bippes (1978), and Wortmann 
(1969). Aihara (1962) and Tani & Aihara (1969) concluded that the Gortler vortices 
indirectly affect the transition by inducing a spanwise variation in the boundary-layer 
thickness, a t  least when the radii of curvature are not extremely small. Tani (1961) 
found the spatial amplification of the Gortler vortices to be small, even at  downstream 
locations close to the transition point. However, these vortices deform the mean flow 
field and induce a spanwise variation in the boundary-layer thickness, resulting in the 
development of velocity profiles having varying stability characteristics along the 
span. The modification of the mean flow modifies the amplification of the unsteady 
waves. Wortmann (1969) observed a secondary steady instability following the 
appearance of the Gortler vortices before three-dimensional unstable waves that lead 
to transition set in. Bippes (1978) and Aihara (1976) observed meandering or pulsating 
vortices before turbulence sets in. Thus, available experimental evidence indicates 
that the Gortler vortices do not lead directly to turbulence without a coupling with 
unsteady two- or three-dimensional unstable disturbances. 

The above shows that there are many theoretical and experimental studies relating 
to the generation of streamwise vortices and a number of experimental studies relating 
to their effect on transition, but to the author’s knowledge, no theory yet exists on 
how these vortices affect the development of Tollmien-Schlichting waves. The purpose 
of the present paper is to present a parametric instability mechanism by which the 
streamwise vortices (for definiteness, Gortler vortices over curved surfaces) increase 
the growth of selected oblique Tollmien-Schlichting waves in growing boundary layers. 
To first order, the selected waves have a spanwise wavelength that is twice that of the 
vortices and their growth rates may increase by a factor of four or five. 

2. Problem formulation 
We consider the stability of a basic flow that consists of the superposition of a steady 

two-dimensional boundary layer and a flow corresponding to growing steady quasi- 
periodic counter-rotating streamwise vortices. For definiteness, we assume that the 
vortices are Gortler vortices resulting from the instability of a boundary layer over a 
two-dimensional concave surface. 

We employ an orthogonal curvilinear body-oriented co-ordinate system x, y, z such 
that x measures distances along the curved wall, y measures distances normal to the 
surface, and z is a rectilinear co-ordinate normal to x and y. We introduce dimension- 
less quantities using the freestream velocity U, and the displacement thickness 8, 
at x, so that the Reynolds number is given by R = UmSr/v, where v is the kinematic 
viscosity which is assumed to be constant. 
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The boundary layer is assumed to be slightly non-parallel so that the flow field is a 
slowly varying function of the streamwise position x. To express this slow variation, 
we introduce the scale x1 = E X ,  where E = R-l is a small dimensionless parameter that 
characterizes the nonparallelism of the boundary layer; E = 0 for truly parallel flows. 
Using x,, we express the boundary-layer pressure and streamwise and normal velocity 
components as Po(x,), Uo(x,, y), and E&(x,, y), respectively. 

Gortler (1941) was the first to show that the above boundary-layer flow over a 
concave surface is strongly unstable. The instability takes the form of counter-rotating 
streamwise vortices called Gortler vortices. Floryan & Saric (1979) and Ragab & 
Nayfeh (1980) gave a comprehensive review of the different analyses of these vortices. 
Following Floryan & Saric and Ragab & Nayfeh and using a modified notation, we 
write the disturbance representing the Gortler vortices for the case of a quasi-parallel 
flow as 

(1) u = U,(X,, y) cos 2pz exp [Jc~dx,], 

v = R-lC(z1, y) cos 2pzexp [ /crdx , ] ,  

w = ~ - 1 W ~ ( x , ,  y) sin 2p.z exp [Jrdx,], 

p = R - 2 P l ( ~ l ,  y) cos 2pz exp [ J c ~ d x , ] .  

For the case of zero pressure gradient, 

P O l  - &DO, + ( H ,  - 4p2 - uU,) Ul - EoC = 0, 

D26 - V, DR + ( - Ho - 4p2- aU0) Vl - (2U0Gi +Go)  Ul - DPl = 0, 

D2V1 - V, DWl + ( - 4p2 - cT710) Wl + 2pP1 = 0, 

D ~ + a U 1 + 2 p i . t ;  = 0,  

U l = R = ~ l = ~  at y = o ,  

U l , C , i . t l + ~  as y-+00, 

where D = d/dy ;  G, is the Gortler number defined by 

(where K surface curvature) and 
G& = R2K 

For the case of flows with pressure gradients, the body-oriented co-ordinate system 
is not suitable for studying the Gortler instability because V, grows linearly with y as 
y + 00. Ragab & Nayfeh (1980) showed that V, is bounded as y --t 00 in a co-ordinate 
system based on the potential lines and streamlines of the inviscid flow. Moreover, they 
showed that the pressure gradient affects the Gortler instability through the modifi- 
cation of the stability through equations (5)-(8) as well as the mean flow. 

It follows from (1)-(4) that V,, W,, and Pl are much smaller than U, and hence they 
can be neglected for the case of Crorbler vortices. T n  order thrtt'the analysis be applicable 
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to  the case of general streamwise vortices, we include them in the analysis. For the 
purpose of the present study, we express (1)-(4) as 

u = U1(x1, y) cos 2/42, v = K(X,, y) cos 2/42, 

u' = Hi(xl, y) sin 2p2, p = Pl(xl, y) cos 2pz, 

(13) 

(14) 

We normalize Ul(xl, y) in ( 1  3) so that its maximum value is unity. As mentioned earlier, 
we consider the stability of a basic flow that consists of the superposition of the 
boundary-layer flow described by the subscript 0 and a flow corresponding to Gortler 
vortices. If the amplitude of the vortices (i.e., ratio of maximum streamwise velocity 
component to  free-stream velocity) is cL', the basic flow to be studied is given by 

u = u,(~,,y)+€,ul(x,,y)cos2/4z+ ... ) (15) 

v = E&(X,, y) + €,K(X,,  y) cos 2pz + . . . , (16) 

W = euWl(xl,y)sin2pz+ ..., (17) 

P = P0(Xl) + e,,P,(x,, y) cos 2/32 + 1 . .  . (18) 

We study the stability of this basic flow to oblique Tollmien-Schlichting waves. 
To this end, we superpose the small unsteady perturbation quantities eTu(x, y, z ,  t ) ,  
eTv(x, y, z ,  t ) ,  eT,w(x, y, z ,  t )  and eTp(x, y, z, t )  on those given in (15)-( 18) so that the 
total flow quantities become U +cTu, V +eTv, W +eTw, and P + s T p .  Here, eT is a 
small dimensionless quantity that is the order of the amplitude of the Tollmien- 
Schlichting waves. I n  this paper, eT is assumed to  be much smaller than 8, and 8 so that 
terms the order of 6% can be neglected compared with cT E ,  and eT E .  Substituting these 
total flow quantities into the dimensionless Navier-Stokes equations, subtracting the 
basic-flow quantities, and keeping linear terms in eT,  we obtain 

u av aw 
x ay az 
-+-+- = 0, 

(20) 

(21) 

(22) 

au au au au au au au 
a p i v 2 u , ,  - + u- +u-+ v- +v-+ w-+w- = -- 

at ax ax ay ay a2 a2 ax R 

av av av av av av av 
ax ax ay ay az ax 

aw aw aw aw aw aw aw ap 1 - + u- +u- + v- + v- + w - + w - = -- +- Vtw, at ax ax ay ay az az a2 R 

+ u - + u - + v - + v - + w - + w- = -2 +; V2V, 

where t is made dimensionless by using SJU,. 
Substituting (15)-( 18) into (19)-(22), we obtain 

au au au ap 1 - + u  -+v-o+---v2u=-E,, at Oax ay ax R 

+[,$-2/4Ulw] s i n 2 / 4 z ) - - ~ [ ~ u + & ~  "I +O(E.E,), (23) 
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av av ap 1 
-+U -++--VV = - 8 ,  
at ' a x  ay R 

+ O ( B ~ , E E ~ ) ,  (24) 

1 -+u at Oax -+- a2 - - v w  R = -€z."ulG+V,T+2/!?Kw cos2pz 
aw aw ap i aw aw 

Equations (1 9) and (23)-( 25) need to be supplemented by initial and boundary con- 
ditions. The initial conditions are specified later, whereas the boundary conditions 
for an impermeable flat surface are 

u = v = w = O  at y = O ,  (26) 

u , v , w + o  as y + m .  (27) 

3. Solution 
We use the method of multiple scales (e.g., Nayfeh 1973) to determine a first-order 

uniform expansion for (19) and (23)-(27). To accomplish this, we let E, = O(e) and 
write E, = X E ,  where x = O( 1) .  If e < B", the effect of the growth of the boundary layer 
is small compared with the effect of the vortices. If E, g E ,  the effect of the vortices is 
small compared with that due to the growth of the boundary layer, and the solution 
accounts for the non-parallel effects only. Thus, the above ordering yields an expansion 
that accounts for the effects of the streamwise vortices and the growth of the boundary 
layer, and it includes the cases E < B, and B ,  < B as special cases. 

We seek a uniform expansion for (19) and (23)-(27) in the form 

where 
x ,  = E"X, 2, = Enz, t, = €9. 

Substituting (28)-(32) into (19) and (23)-(27) and equating coefficients of like powers 
of E ,  we obtain the following : 

Order so: 

15-2 
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- 2  V1-++-+-vo 
av  avo 2 [ a2vo I a2vo ] ([ avo avo av, 

9Jv1 ,p1)  = --O- u - +- - 
at, 'ax1 R axoaz, azoaz, 8x0 aY ay 

(42) 

u1 = v1 = w1 = 0 a t  y = 0, (43) 

u,, vl, w1 + 0 as y + 00. 

In  the above 
(44) 

The initial conditions are taken such that the solution of the zeroth-order problem, 
(33)-( 38), consists of two wave packets centred around the frequency w ,  the streamwise 
wavenumber a, and the spanwise wavenumbers p1 and -pl; that is, 
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and the functions A, and A, are undetermined a t  this level of approximation; they 
are determined by imposing the solvability conditions at the next level of approxi- 
mation. Substituting (45)-(49) into (33)-( 38) yields the following eigenvalue problems : 

where 0s = ac/ay. For a given w, P,, and R, one can solve (50)-(55) numerically to 
determine the complex eigenvalue a and the eigenfunctions 6,,. 

Substituting (45)-(49) into (39)-(44) yields 
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x A,exp [i0,-2i(p-pl)zo]+NST, (59) 

where NST stands for terms that are proportional to exp [ f i(p + 8,) x O ] ,  which do not 
produce secular terms in u,, vl, wl, and p,. 

Since the homogeneous parts of (56)-(59), (43), and (44) are the same as (33)-(38) 
and since the latter have a non-trivial solution, the inhomogeneous equations (56)-( 59), 
(43), and (44) have a solution only if the inhomogeneous parts are orthogonal to every 
solution of the adjoint homogeneous problem (e.g. Nayfeh 1981). These solvability 
conditions depend on whether /3 w p, or not. If /3 is away from pl, the solvability 
conditions yield two uncoupled equations describing the effect of non-parallelism on 
A, and A,. If p w pl, we introduce a detuning parameter u defined by 

p = P1+su, (60) 

where v = O( 1) and express (p - p, )  zo as vzl. Then imposing the solvability condition 
that the inhomogeneities be orthogonal to every solution of the adjoint homogeneous 
problem, we obtain 

where the 9's and h's are given in the appendix together with the adjoint problems. 
Differentiating (33)-(38), respectively, with respect to a and P,, and imposing the 
solvability conditions, one can shorn tha t  

where w, and wp are the complex group velocities in the x and z directions. 
Since the solutions of (61) and (62) for general initial conditions are not available yet, 

we consider next the special case of a single-frequency disturbance that is perfectly 
tuned in the spanwise wavenumber. The single-frequency assumption corresponds to 
the case of a disturbance generated by a vibrating ribbon. The second assumption 
demands that p = p1 and that the waves are modulated in the streamwise direction 
only. Thus, we consider the case in which aAn/i)t, = itAn/az, = 0 and u = 0. Then, 
(61) and (62) can be rewritten as 

-- 'A, - Fgl A, + €,t12 A~ 
dz 
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where 
i n  = hn/gn,, i 1 2  = h12/g12, i 2 1 =  h21/g22. 

It follows from (50)-(55) that  c13 = - <23 and cln = c2n for n =I= 3, while it follows 
from (A7)-(A 12) that  the adjoint solutions are related by cz = -[& and [c = <$, 
for n 4. Hence, i t  follows from (A 2), (A 4). (A 5), and (A 6) that  

Thus, 
g,, = 9 2 2 ,  hl = h,, hl, = h21. 

i, = i2 and &, = i,,. 
Therefore, adding (64) and (65) yields 

Subtracting (64) from (65) yields 

(67) 
d 
-& ( A ,  - A , )  = ( e l ,  - E ,  L12) ( A  * - A,) .  

The solutions of (66) and (67) are 

1 
. .  . .  

A , + A ,  = 2c ,exp[~(~ f i l+~ , . f i 12 )da  , 

where c1 and c,, are arbitrary constants that  can be determined from the initial 
conditions. Solving (68) and (69) gives 

A ,  = c,exp [ 1 ( s ~ , + ~ , & , ) d a  + c , e x p [ ( ~ ~ ~ - ~ , . f i ~ , ) d ~ ] ,  

A ,  = c,exp [ /(~.f i ,+~,.. f i , ,)da 1 - c , e~p[ (~ . f i , -~ , f i , , ) da] .  

I 
Substituting for A ,  and A ,  in (45), using (49), substituting the results into (28), and 

recalling that. p1 = p, we obtain 

+c,exp ( - e , . / ~ , , d x ) ]  + .... (72) 

Equations (A 2) and (A 5)  show that, in general, Ll2 is a complex number. Hence, one 
of the terms multiplying c1 and c2 decays whereas the other grows exponentially with 
distance. Thus, the growth rate cr based on u for either the wave with the positive or 
negative jj’ is 
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F x 10-6 a7 uas x 103 U,X 103 
80 0.2094 - 10.920 4.033 
75 0.1993 - 6.587 3.792 
70 0.1884 - 2,937 3.524 
65 0-1769 0.006 3.279 
60 0.1650 2.256 3.075 
55 0.1527 3.843 2,918 
50 0-1401 4.801 2.812 
45 0.1273 5.165 2.757 
40 0.1142 4,973 2.750 
35 0- 1009 4.268 2.781 
30 0-0873 3.101 2.829 
25 0.0735 1.549 2.864 
21 0-0621 0.1105 2.887 
20 0-0592 - 0.2643 2.901 
19 0-0562 - 0.6410 2.923 
18 0.0533 - 1.017 2.960 
17 0.0503 - 1.389 3.0 15 

TABLE 1. Comparison of gas = -ai with B, for E ,  = 0.01, 
p = 0.077463, R = 950, GN = 13.9566. 

because Cll = C2,. As 8, -+ 0, (73) agrees with the non-parallel result of Nayfeh & 
Padhye (1979). 

Equation (73) shows that the growth rate is the sum of three quantities: aQp = - ai, 
the quasi-parallel growth rate; crnp = €[Re (8,) + 8cll/8xl], the effect of non- 
parallelism; and v, = ce IRe h121, the effect of the streamwise vortices. Thus, in a given 
physical situation, the relative influence of the vortices and non-parallelism depends 
on the relative magnitudes of e and c,. For maximum amplified waves, c = O( 
whereas for flows over concave surfaces, 8, can be O(O.10)) depending on the radius of 
curvature. I n  such situations, the effect of the vortices dominates the effect of non- 
parallelism, and the presence of the vortices is a very powerful instability mechanism. 
Hence, the presence of this mechanism may not be difficult to check experimentally. 

4. Numerical results and discussion 
We present numerical results for the case of flow past ;I cylinder with the streamwise 

cross-section in the form of a circular arc; in other words, the flow over a surface that 
has a constant curvature over a finite streamwise extent. For this case, the boundary- 
layer flow is given by the Blasius solution. I n  all results, the Reynolds number R = 950 
and the Gortler number GAV = 13.9566. For a given p, the computer code developed by 
Ragab & Nayfeh (1980) was used to calculate cr and U,, &,I%, and PI as functions of y, 
It was found that cr = 1.1G22.5 when /3 = 0.077436, cr = 1.42879 when /3 = 0.1, and 
u = 1.92067 when /3 = 0.15. As mentioned earlier, V,, W,, and Pl are small compared 
with U,. The three-dimensional code of Nayfeh & Padhye (1979) was used to determine 
a as a function of dimensionless frequency F = w / R  for the cases pl = ~f: p. The results 
(a, and uqp = - ai) are listed in columns 2 and 3 of tables 1-3 for p = 0-077436,O. 1 ,  and 
0.15, respectively. Corresponding to each a, we calculated the Cnm and C&. Then using 
(A2)  and (A5),  we calculated gn, and h,, from which we calculated h,,, and then 
u? = 8, IRe Zll : i t  is listed in column 4 of tables 1-3. 
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F x 10-6 a, uq9 x 103 u, x 103 

80 0.2608 - 12.844 6.047 
75 0-1967 - 8.339 5.668 
70 0.1858 - 4.517 5.290 
65 0.1743 - 1.409 4.962 
60 0.1622 1.000 4.698 
55 0,1498 2.743 4.501 
50 0.1371 3.858 4.369 
45 0.1241 4.384 4.297 
40 0.1108 4.363 4.278 
35 0.0973 3.841 4.303 
30 0-0836 2.877 4.370 
25 0.0691 1.551 4.509 
21 0.0582 0.3150 4.756 
20 0.0554 - 0.0055 4.851 
19 0.0524 - 0.3276 4.963 
18 0.0496 - 0.6483 5.093 
17 0.0466 - 0.9651 5.243 

TABLE 2. Comparison of ua, = -a, with u, for 8, = 0.01, 
/3 = 0.1, R = 950, f 2 ~  = 13.9566. 

F x 10-6 Ur u,, x 105 U, x 103 

70 0.1787 - 9.623 10.774 
65 0.1671 - 5.996 10.115 
60 0.1550 -3.105 9.634 
55 0.1424 - 0.908 9.318 
50 0.1295 0.645 9.148 
45 0.1164 1.607 9,113 
40 0.1030 2.029 9.201 
35 0.0895 1.970 9.396 
30 0.0759 1.498 9.667 
25 0.0623 0.703 9.947 
22 0.0542 0.118 10.068 
21 0.0515 - 0.087 10.090 
20 0.0488 - 0.295 10.100 
19 0.0461 - 0.506 10.096 

TABLE 3. Comparison of uqp = -ui with u, for B, = 0.01, 
p = 0.15, R = 950, GN = 13.9566. 

Tables 1-3 show that the presence of the vortices is destabilizing because it increases 
the range of frequencies that receive amplification and it increases the amplification 
rate at  any frequency and spanwise wavenumber by a significant amount. The 
increase in the amplification rate increases with increasing spanwise wavenumber (i.e. 
decreasing spanwise wavelength). When p = 0.15, the increase of the maximum 
amplification rate 2.029 x 10-3 is 9.201 x 10-3, which is more than fourfolds. Since a 
Gortler vortex having an amplitude of 1 yo of the mean flow (i.e. E, = 0.01) is not 
uncommon, the present resonance instability mechanism may dominate the transition 
process. 

It should be noted that the present analysis is valid only when the amplitude of the 
Tollmien-Schlichting waves eT is small compared with the amplitude of the vortices E,. 

As thc Tollmien-Schlichting waves grow, one needs to accdunt for their influence on 
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the vortices. In fact, they will generate streamwise vortices having an amplitudeO(e$) 
(Klebanoff, Tidstrom & Sargent 1962; Benney & Lin 1960; Antar & Collins 1975), 
which may strengthen or weaken the primary vortices, depending on their phasings. 
This effect has not been taken into account in this paper. 

The help of Dr Atul Padhye and Dr S d  A. Ragab and Mr Ninh HaQuang in 
obtaining the numerical results is greatly appreciated. The comments and discussions 
of Dr Mark Morkovin and Dr William S. Saric are also greatly appreciated. This work 
was supported by the Fluid Dynamics Program of the United States Office of Naval 
Research and the National Aeronautics and Space Administration, Langley Research 
Center under Grant NSG 1255. 



Effect of streamwise vortices on Tollmien-Schlichting waves 463 

(A 8) 
1 

- D e l  + DUO cz, + i( Uo a - w ) - 3 ( Da - aa - f iz)  cg8 = 0, 

4 
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